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The purpose of this work is to couple different numerical models
and approximations for the calculation of high speed external flows
governed by the compressible Navier—Stokes equations. The pro-
posed coupling is achieved by the boundary ¢conditions, which im-
pose viscous fluxes and friction forces onthe body for the calculation
of the global external flow and which impase Qirichlet type bound-
ary conditions on the interface for the local model. © 1995 Aca-
demic Press, Inc.

1. INTRODUCTION

The purpose of this work is to couple different numerical
models for the calculation of high speed external flows. More
precisely, we want to be able to introduce a specific treatment
of the flow next to the body, this '

(i) for numerical purposes, in order to use locally a differ-
ent solver (centered scheme, for example);

(ii) for approximation purposes, in order to use locally a
much finer grid;

(i) for physical reasons, in order to use locally a different
equation such as nonequilibrium chemical models or Boltzmann
kinetic models.

We treat in this paper only the first two aspects. For the third
one, we refer to Le Tallec and Tidriri (see |5, 6]) and Tidriri [9].

The proposed coupling is achieved by the boundary condi-
tions, which will impose viscous fluxes and friction forces on
the body for the calculation of the global external flow and
which will impose Dirichlet type boundary conditions at the
external boundary of the local model.

A rteview of the heterogeneous domain decomposition
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method for convection—diffusion problems was done in [14].
In [ 14] the authors discuss the coupling of the convection—diffu-
sion equation with the convection one through proper interface
conditions and without overlapping. The purpose here, in our
work, is (o introduce a specific treatment of the flow next
to the body using overlapping techniques. And the resulting
algorithm is more general {see [3-6, 9-10]).

2. DESCRIPTION OF THE COUPLING STRATEGY

2.1. Navier-Stokes Equations

Let us consider the compressible Navier—Stokes equations
which we formally write either as

Q;TV + div[F(W)] =0 on {} (conservative form)

or as

% + (Y + D(Uy=0 on{}(nonconservative form)

with W = (p, pv, pE) and U = (p, v, ) the conservative
and nonconservative variables, F = F- + Fp the total flux
(convective and viscous part), T and D the convective and
viscous terms in the nonconservative writing of the Navier—5-
tokes equations. The problem consists in computing a steady
solution of these equations, with boundary conditions

pv, pE given on ' (exterior limit of the domain),

pgivenon [y M {x, v(x).-n = 0} (inflow),
~v =20 on the body I, (no slip),

@ = 8, onthe body I,

The global numerical treatment of these equations faces the
following difficulties:

—in a conservative calculation, the numerical viscosity of
the discretization scheme interferes with the physical viscosity
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FIG. 1.

The global geometry.

and for a mesh of reasonable size leads to an overprediction
of the boundary layer. Moreover, no slip boundary conditions
on the body are difficult to handle for many TVD schemes;

—in a nonconservative calculation, the correct calculation
of a shock requires locally a very fine grid if we want to satisfy
the Rankine Hugoniot conditions.

In this framework, our strategy will couple a global conserva-
tive scheme, defined on the whote domain and based on a finite
volume space discretization [1], and a local approximation,
defined in the neighborhood of the body, which is presently
based on a mixed finite element approximation of the noncon-
servative Navier—Stokes equations [2].

2.2. The General Coupling Strategy

For coupling external Navier-Stokes equations, with local
Navier—Stokes equations, we introduce two domains, a global
one {), a local one {1y included in £, and an interface I'; (Fig.
1 in which I, denotes T',). The global solution W on {} and the
local solution Uy, on £}y, which both satisfy the Navier—Stokes
equations, are matched by the following boundary conditions,
inspired of Schwarz overlapping techniques:

W = given imposed value on .,

n-og(W):-r = n-a(U,)- 7 on the body T, {equality of fric-
tion forces)

gW)-n + n-a(W)-v = g(Up)-n on T, (equality of total
heat fluxes)

v-n=0onl,

Ue = 0onT'y; Uy = W on the interface T ..

Above, n-o-n and n- o- 7 respectively denote the normal
and the tangential force exerted by the body on the flow, with
# as the unit normal veetor to the body oriented towards its in-
terior.

The calculation of Uy, and W satisfying the above boundary
conditions is then obtained by the time marching algorithm,
which was introduced by Le Tallec and Tidriri (see [3, 4]), and
Tidriri [9-11] and which leads to the following algorithm.
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Initialization

1. Guess an initial distribution of the conservative variable
W in the global domain (1,

2. Agdvance in time this distribution by using the global
Navier—Stokes solver on N, time steps, with Dirichlet type
boundary conditions on the body T',;

3. Deduce from this result an initial distribution of the local
variable U/, on the interface T'; and in the local domain £};

4. Advance in time this distribution by using the local

solver on N, time steps with Dirichlet boundary conditions on
[and T,.

Iterations
5. From U, compute the friction forces n- o(Uy,.) - 7 and
heat flux g{U,,)-n on the body I';;

6. Advance the global solution in time (N, steps) by using
the global Navier—Stokes solver with the above viscous forces
as boundary conditions on I, (Section 2.4);

7. From W, compute the value of Uy, on the interface I';

8. Using this new value as Dirichlet boundary conditions
on T';, advance the local solution in time (N, steps) and go back
to step 5 until convergence is reached.

This algorithm completely uncouples the local and the global
problems which can therefore be solved by independent solvers.
A parallel version is also quite possible, although it is generally
wiser to use parallel solvers within steps 6 and §.

2.3. The Global Navier-Stokes Solver

The global domain £ is discretized using node centered cells
defined on an unstructured grid. Then, at each time step n and
for each cell i, we solve

Wn+l _ Wn J»
+ F Wn-H - H;
,J.C‘ At j;(i) acnac, ol )n

rtly |,
+ [y FoW )

+f F(W).p, = —f F,-n.
acnr, acnr,

In our numerical implementation, the fluxes F; and Fy are

Pj

FIG. 2. A boundary cell.
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FIG. 3. Mach contours {conservative global computation on domain 2).

computed at time step n + | and linearized, with Fr computed
by an Osher approximate Riemann solver [1]. The resulting
linear system is solved by a block relaxation method.

On the body T, because of our special choice of boundary
conditions, the flux is given by

0
(W en;
1 a{U}-
HUic) - 115

?

J- o Fan= f
acnr, ac,r,

where the aspect of a boundary cell C; is described in Fig. 2,
In other words, friction forces and heat flux are given explic-

8.3
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itly as predicted by the local solver and the mass flux is imposed
to zero. Then, in order to have a well-posed problem, at least
in the incompressible case (see Section 6), the normal stress
(the multiplier of the zero mass flux constraint) cannot be
imposed and must be obtained from the solution W«*',

Remark. [mposing friction forces to the global solution
instead of no slip boundary conditions allows to have an accu-
rate solution away from the boundary layer even with a coarse
mesh {see [9]).

2.4. Interpretation

The final question concerns the interpretation of the coupled
problem solved at convergence in Section 2.2, In a
Navier—Stokes/Navier—Stokes coupling, this interpretation is
easy. For very tine discretizations, U, and W satisfy the same
Navier—Stokes equations on £}y and, at convergence, they sat-
isfy the boundary conditions

W= Uloc an F;,

gW)-n+n-o(W)-v = gl n + n-o{U) v on Iy,
nagWy r=n-ol,) ron T,

vn=p,-n=0onl,.

From this, we deduce that W and &/, are solutions of the
same well-posed problem defined on (), by the Navier—Stokes
equations and by the above boundary conditions. Hence we
have W = LJ,, on {}, which implies that W satisfies the no slip
boundary conditions W = {/,, = 0 on I, {more precisely, W =
(p, pv, pE) = (p, 0, pc, 8,y on I',). Since W also satisfies by
construction the inflow boundary conditions on T, and the
Navier—Stokes equations on £}, we finally see that W is the
solution of our original problem.

If the discretization step is not very fine, then W and U, are
only identical within the discretization error, an error which is
produced first by the coarse mesh used for computing W and
second by the weak treatment of the boundary conditions im-
posed at the wall to W. Because of this weak treatment, the
discretization error on W is hoped to stay local, which means
that we hope that W will be reliable on the interface. If this is
the case, U, will satisfy the right equation inside {3, and the

FIG. 4, 3kin friction coefficient Cf on the body (conservative global computation on domain 2).
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FIG. 5. Stanten number (conservative global computation on domain 2).

right boundary conditions on the interface and on the wall; it
should then be an accurate local approximation of the solution,

3. COUPLING CONSERVATIVE AND
NONCONSERVATIVE SCHEMES
3.1. The Local Solver

In this case, the local solver takes the form

* let U° = (p, v, 6) be computed at the previous call of the
local solver;

* let U; = (p, v, 6) on I'; be compuied by interpolation from
the values of the global solution W on the interface;

FIG. 6. Velocity field in the wake (conservative global computation on
domain 2).

* forn = O to N,, solve the local nonconservative Navier—S-
tokes equations

J- U!H’l — Uﬂ
o, Ar
Un+[ = Ui
(v, """ = (0, 8,) onT,.

0+ fﬂv(m D)UYV, =0, Vj

onl),

Here the nonconservative Navier—Stokes equations are discret-
ized by mixed finite elements (P, for p and 8, P, on the subdi-
vided P, grid for the velocity). The test functions Q correspond
then to the shape functions of the corresponding finite element
spaces. The resulting nonlinear system is sclved by a few steps
of a nonlinear matrix-free Newton/Krylov solver, in which the

FIG,7. Mach contours (nonconservative global computation on domain 2),
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FIG. 8. Skin friction coefficient Cf on the body (nonconservative global computation on domain 2).

Krylov method is GMRES (see [8]). This matrix-free method
{which allows no-storage of the matrix) was first proposed
and used to solve ODE (see [7]). A more standard way of
preconditioning a nonlingar system is to use the usual incom-
plete factorization techniques such as the incomplete LU (ILU).
However, this approach requires the Jacobian matrix explicitly
and thus loses the main advantage of Jacobian-free Krylov
subspace methods. Therefore we propose to use only diagonal
preconditioner. (See [9] for more details.)
In the output, friction forces and heat flux are given by

U(Uluc) — M(Q"H)((VU"H + V'U"H)/Z — %dl\’ URHId),

agn-{'l
q(Uloc) =A .
on
Remarks. (i) The Dirichlet condition on the interface I';

can be replaced by a Neumann-type boundary condition of
the form

(T + DYU™™ = ¢(W) onl.

Such a condition might lead to an easier local problem, since
it does not impose a fixed value of the density on an outflow

202

boundary. These ideas have been exploited while coupling dif-
ferent equations such as Navier—Stokes or Euler with the Boltz-
mann equations (see [9, 12]).

(ii) The nonconservative approach simplifies the calculation
of the viscous terms and is well suited to flows at low Mach
numbers. On the other hand, it cannot treat hypersonic situa-
tions. Therefore, we will also use a conservative local solver
(see Section 4).

3.2. Numerical Tests
3.2.1. The Transonic Case

The test problem consists of a two-dimensional flow around
an ellipse, with 0° angle of attack, M. = 0.85, Reynolds
number = 100, and a wall temperature Ty = 2.82T..

We have first performed a calculation on a domain which is
8 times larger than the obstacle (we call this domain : domain
1), both with the conservative and the nonconservative schemes.
The Mach contours obtained by these calculations are very
different (see [9]). We have concluded that this difference is
attached to the subsonic character of the flow: Dirichlet bound-
ary conditions imposed on the external boundary of the domain
has an influence on the whole flow and this influence is more

—

-8.02

FIG. 9. Stanton number {noaconservative global computation on domain 2).
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FIG. 10. History of convergence for the coupled approach.

clear in the case of the nonconservative centered scheme. This
difference disappears when the computational domain is bigger
than 20 times the iength of the obstacle (domain 2).

Since all the results presented here, except those of Section
4.2.2, are geometrically symmetrical, we show only on the
results above the axis Figs. 3, 13, and 14.

(a) Conservative global computation on domain 2. We
solve the Navier—Stokes equations with no-slip boundary con-
ditions using the global conservative scheme alone. The mesh
has 16,008 nodes and 31,768 elements. Subsequently, this will
be our reference. The reference numerical results are shown in
Figs. 3 (Mach contours), 4 {skin friction coefficient Cf on the
body), 5 (Stanton number Sn), and 6 (velocity field in the

/,/\////j

e
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FIG. 12. Mach contours (local computation in the coupled scheme).

wake). We observe small vortices in the wake which can only
be detected by a fine mesh and very large viscous effects.

(b} Nonconservative global compuration on domain 2, We
solve the Navier—Stokes equations with no-slip boundary con-
ditions by using the global nonconservative solver alone. The
mesh used has 4033 nodes and 7942 elements for the P1 grid
and 16,184 nodes and 32,120 elements nodes and 7942 elements
for the P1 grid and 16.184 nodes and 32,120 elements for the
grid P2. The results of this calculation are reported in Figs.
7-9 (Mach contour, Cf, Sn).

As for the global nonconservative calculation (above) and
the global conservative calculation they are both perfect for
the Mach contours and for the Cf (less than 3% error), but
overshoot the maximum value for Sn. This indicates that the
temperature grid is too coarse. If we now decrease the size of

FIG. 11. Mach contours {global computation in the coupled scheme).

FIG. 13, Zoom of the global mesh.
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FIG. 14, Zoom of the local mesh.

the computational domain to less than 20 times the length of
the obstacle, the global nonconservative calculation is very
rapidly polluted, which is not the case for the coupled problem
(see below and also [9, 10]).

(cy Coupled strategy and local refinement techniques. We
solve the Navier—Stokes equations by using the coupled
scheme, and taking as the computational domain the domain
1. We take the same global mesh as above (1378 nodes and
2662 elements). For the local domain the mesh has 1114 nodes
and 4282 elements. The latter is obtained from an initial local
mesh (669 nodes and 1222 elements) by refining adaptively in

| loglresidu)

-2. 3 ]

-2.8 _i

6.3 : L | I T T 1 [ T 7T 1T 1
162 38265 76367 ;1_“4469

FIG. 15. CPU time comparisons between the uncoupled scheme and the
coupled approach. Thin line, coupled scheme; thick line, uncoupled nonconser-
vative scheme.
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FIG. 16, Mach contours (local computation in the coupled scheme).

the boundary layer and in the wake region. Before refinement,
the local results are not sufficiently accurate [9]. Near the body
we present the following results:

{13 The Mach contour obtained at convergence in the
global calculation (conservative scheme with imposed flux on
the body) (Fig. 11).

(2) The Mach contour obtained at convergence in the
local computation (nonconservative scheme with imposed
boundary conditions on the interface) (Fig. 12).

The Mach contour obtained by the coupled nonconservative
scheme (Fig. 12) and by the nonconservative scheme used alone
(Fig. 7) are both perfect.

The same conclusion is still valid for both the skin friction
and the Stanton number (see [9, 10]).

On Figs. 13 and 14 we show a zoom of the global mesh
and of the local one. We remark the incompatibility of the
two meshes.

(d) A Remark on History of Convergence. We show the
history of convergence for the coupled approach, using local
time steps:

pn+l _ pn
Ar

Ly

This is reported in Fig. 10 for the calculation of (c).

(e) CPU Time comparison. On Fig. 15, we show CPU time
comparisons. The first curve represents the CPU time function
of the residual norm {matrix-free Newton/Krylov) for the non-
conservative scheme used alone and corresponds to the calcula-

FIG. 17.  Mach contours (global computation in the coupled scheme).
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FIG. 18. History of convergence for the coupled approach.

tion of (b). The second curve represents the CPU time function
of the residual norm for the coupled approach and corresponds
to the calculation of (¢). These calculations were done on an
Apolo DN 10000. This comparison highlights the high perfor-
mance of our strategy in terms of CPU time.

3.2.2. Hypersonic Case

In this case, the test problem consists of a two-dimensional
flow around an ellipse, with 0° angle of attack, M. = 2, and
Re = 1000. We solve the Navier—Stokes equations with the
proposed coupled approach. The local mesh has 3031 nodes
and 5834 elements for the grid P1, and 11,896 nodes and 23,336
elements for the grid P2, while the global mesh has only 2510
nodes and 4916 elements.

FIG, 19, Mach contours {global computation in the coupled scheme).

MOULAY D. TIDRIRI

FIG. 20. Mach contours (local computation in the coupled scheme}.

Near the body, we present the following results:

(1Y The Mach contour obtained at convergence in the non-
conservative local calculation with imposed boundary condi-
tions on the interface (Fig. 16);

(2) The Mach contour obtained at convergence in the con-
servative global calculation with imposed fluxes on the body
(Fig. 17).

We remark the importance of the slip phenomenon (see [9])
due to the strong incompatibility of the two meshes (local and
global). Finally, we present in Fig. 18 the history of convergence
for the coupled scheme:

Lz(r‘_)/

‘For the same test problem, we have constructed a global
mesh such that its trace on the local domain produces the same

p!H'l — lprl
At

0

£
At

2y

I: loglresiduli —l

0.2 ]
-2.8 _|
-4.8 |
6.0 I I R
1 100 200 e
[ iteralians I
FIG. 21. History of convergence for the coupled scheme.
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FIG. 22. Mach contours {global computation in the coupled scheme).

local mesh used above, and its trace on the rest of the domain
{outside the local part) is four times finer than the corresponding
trace of the mesh used for the global calculation in the coupled
scheme. This mesh has 4839 nodes and 9578 elements for the
grid P1, 19,296 nodes and 38,312 elements for the grid P2. We
tried then to use the nonconservative scheme alone for the
calculation of the test problem defined above. This scheme did
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not converge. This shows that our algorithm does make the
nonconservative scheme converge, while used alone this same
nonconservative scheme does not converge.

Remark 3.1. This test problem shows how the proposed
approach extends the validity of the local model.

3.2.3. Conclusions

Compared to the global nonconservative approach, the cou-
pled approach is more robust and can use much smaller compu-
tational domains.

Compared to the global conservative approach, the coupled
method requires fine grids in much smaller regions and allows
a large flexibility in the definition of boundary conditions. This
fiexibility will even be larger for the coupling of differents
equations such as Navier—Stokes with Boltzmann (see [5, 6, 9]).

The second conclusion concerns the use of adaptive mesh
techniques. The proposed method allows the use of these tech-
niques on the local mesh and hence on a very small domain.
Consequently, the proposed method allows the efficient use of
these techniques.

The last conclusion concerns the use of the proposed ap-
proach in the calculation of hypersonic flows. For the test
problem above we have showed that the nonconservative
scheme used in our strategy gives good results while the same
scheme used alone does not converge. Consequently our
method extends the validity of the nonconservative model.

4. COUPLING CONSERVATIVE SCHEMES

In this case the nonconservative local solver is replaced by
a conservative one.

8.6 |

e L \

-0.6 L

-1 0 ‘\;| . . ' . . ' : , L : L L
-1. 96D -0. @59 -0. 240 -0. 830 -4, 920 -B. 919 3. 9o

FIG. 23. Tangential velocity on the body (global computation in the coupled scheme).
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4.1. The Local Solver
The local solver takes the following form:

* Let Wi, = (g, pv, €) be computed at the previous call of
the local solver; -

* let W, = (p, pv, ¢) on I'; be computed by interpolation
from the values of the global soluton W on the interface;

» for n = 0 to N,, solve the local conservative Navier—§-
tokes equations:

Wi — Wﬁm)
— | dr+ f Fo(Withy . p dor
j C-( Ar i j;v‘ft) By (Wi
ntly | 1y .
+ fac,nr Fc(th ) H d(T + J'iiC‘ﬂl" FD(W]DC ) ]’ld(f

=0 V¥i(cell) (D

Wl =W, onl,

(PUQH, TH-H) = (01 Tb) on Fh-

Here, the conservative Navier—Stokes equations are discretized
by the hybrid scheme (finite volume/Galerkin) already used
for the global problem.

If we were using compatible meshes for the local and for
the global problems, then the coupled approach will yield the
results of a global conservative approach. But below, we will
use a fine local mesh generated independently on the global
mesh.

4.2. Numerical Results
4.2\, The Transonic Case

We treat here the same problem as the one already studied
in Section 3. The local mesh used here is obtained from the
local mesh used in Section 3. To construct this mesh, we have
used an adaptive mesh techniques (see [13]), refining both the
boundary layer and the wake region (4282 nodes and 8216
triangles). Near the body we show:

(i) the converged Mach contour in the global conservative
solver with imposed fluxes on the body (Fig. 19),

(i1) the converged Mach contour in the local conservative
solver with the imposed conditions on the interface (Fig. 20).

The local conservative calculation in  the coupled
conservative/conservative scheme and the local nonconserva-
tive calculation in the coupled conservative/nonconservative
scheme produces the same Mach contours (Figs. 19 and 12).
But the maximum Cf is 1.36 for the first calcolation and 0.41
for the second one. The maximum Stanton number goes from
0.08 for the local nonconservative solver in the coupled
conservative/nonconservative to 0.053 for the local conserva-
tive solver in the coupled conservative/conservative scheme
{see [9, 10]).

MOULAY D. TIDRIR!
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FIG. 24. Mach contours (local computation in the coupled scheme).

A remark on history of convergence. Figure 21 presents the
history of convergence; both solvers use local time steps:

o™ = el ofllizary.

We show (see [9]) that the coupled scheme does not disturb
the history of convergence for the global solver.

A remark on the initialization process. In principle, we initial-
ize the coupled scheme by a uniform flow. Sometimes it is
useful to initialize this algorithm by several iterations of the
Navier—Stokes calculation with no-slip conditions (see [9] for
further details).

4.2.2. The Hypersonic Case

The iest problem in this case is a calculation around a double
ellipsoid with no angle of attack, M. = 4 and Re = 1000. The
global mesh uses 2749 nodes and 5288 triangles and the local
mesh uses 5592 nodes and 10,585 triangles. The latter is ob-
tained by using adaptive mesh techniques refining both the
boundary layer and the shock zone.

Near the body, we show:

(i) The converged Mach contour for the global conserva-
tive solver with imposed fluxes (Fig. 22).

(ii) The converged Mach contour for the local conservative
solver with iqposed conditions on the interface I'; (Fig. 23).

On Fig. 24 we represent the tangential velocity computed
on the body by the global solver. These values are important,
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FIG. 25. Loop of the global mesh.

which means that the global mesh and the local mesh are very
incompatible (Figs. 25 and 26). But the Cf are still correctly
predicted by the coupled approach, which is not true for a
global conservative approach with no-slip boundary conditions
(the conservative scheme used alone). In other words, the cou-
pled approach gives both an error estimate and a protection
against coarse meshes.

4.2.3. Conclusions

The coupling scheme allows us to reduce considerabty the
computational domain and to obtain the same precision locally;
on the other hand, it allows an easy identification of the zones
where a fine mesh is necessary and gives a large flexibility in
the definition of boundary conditions,

The last conclusion concerns the computation of high Mach
number flows. We have obtained good results by our coupled
strategy using mesh adaptation techniques locally. The local
mesh is very fine while the global one is coarse and therefore
these meshes are incompatible. The proposed method allows
then the use of a fine mesh only locally.

FIG. 26. Loop of the local mesh,
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5. CONVERGENCE PROPERTIES OF THE
COUPLING SCHEME

As described in {3], numerical tests run for a linear advection
diffusion problem show that the coupling algorithm is linearly
convergent when At is below a limit value which increases
with the Reynolds number. A one-dimensional analysis shows
that this condition is necessary, an asymptotic analysis done
for At and h small [9] shows that such a condition is sufficient.

More precisely, if we replace the Navier—Stokes equations
by the linear advection diffusion problem

i(—]5—A()&Jrv-quwkié:O,
ot o
d=¢. onl.,

d=0 onl,

and if we denote by d the minimal distance from the wall to
the interface, we have [4, 9]:

(1) for Ar = o (that is equivalently if we take N, and N,
to be very large), from the maximum principle, the proposed
coupling strategy converges linearly (with constant K exp( —d*/
)} if ¥ is large and diverges if & = 0 and d small;

(2y for At arbitrary, and if we use a time implicit bound-
ary coupling

3 ?
5 W= UlD ol

the proposed coupling strategy converges linearly. Moreover,

a fixed point algorithm applied to the calculation of

(alam)Ut" will converge linearly if d/At is sufficiently large;
(3) for At arbitrary and time explicit boundary coupling

L= Ly, on,,

dn an
numerical evidence shows that the proposed coupling strategy
converges only if Az is below a certain threshold.

6. THEORETICAL STUDY OF THE BOUNDARY
CONDITIONS INTRODUCED BY THE COUPLED
STRATEGY: INCOMPRESSIBLE CASE

The theoretical study of the boundary conditions introduced
by the coupled strategy shows that each global incompressible
Navier—Stokes problem associated with those new slip bound-
ary conditions is well posed. For more details we referto [9-11].

7. CONCLUSIONS

In this paper we have developed and studied a new algorithm
for coupling different discretizations and modelizations. We
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have performed extensive study of this algorithm applied to
Navier—Stokes equations. We have established the validity of
this approach in several configurations (transonic, supersonic,
and hypersonic flows).

Compared to classical methods our algorithm allows very
much less storage and high performance in terms of CPU time.

We have also shown that this algorithin extends the validity of

the local model.

The interest of the method to increase accuracy and efficiency
by using locally the more appropriate model or approximation
has been shown. In addition te these added values in terms of
guality and speed, the algorithm gives an easy way of supple-
menting and testing a large variety of boundary conditions (see
[5-6. 9-10, 12]).
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